

## The first results of the Muon g-2 experiment at Fermilab

Prof. Dr. Martin Fertl **PANIC 2021** September 7<sup>th</sup>, 2021

JOHANNES GUTENBERG UNIVERSITÄT MAINZ





### Muon g-2: Status of theory vs. experiment before April 7<sup>th</sup>, 2021

### The Muon g-2 experiment at FNAL

- The measurement principle
- The muon source
- The muon storage ring and its instrumentation

### Selected aspects of the data analysis chain

- The anomalous spin precession frequency and its corrections
- The precision magnetic field and its corrections

### The experimental result

## Outline



## The magnetic moment of a charged lepton



Charged particle with magnetic dipole moment and spin

$$\overrightarrow{\mu} = g \frac{q}{2m} \overrightarrow{s}$$





### SM prediction meets the experiment (before April 7, 2021)



Experiment (BNL E821):  $a_{\mu}^{\text{BNL}} = 116592089 \pm 63$  (540 ppb)  $a_{\mu}^{\rm SM} = 116591810 \pm 43$  (368 ppb) Total SM prediction:

repancy: 
$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (279 \pm 76) \times 10^{-11}$$

Evolved to 3.7  $\sigma$  deviation between SM and BNL experiment!

Goal of the Muon g-2 experiment at Fermi National Laboratory





## Recent evaluations of the SM prediction of $a_{\mu}$

#### **Units: xxx 10**-11

QED ( $O(\alpha^5)$ , > 12000 digrams):

Electroweak:

LO hadronic vacuum polarization: NLO HVP: NNLO HVP:

LO hadronic light-by-light scattering: NLO hLbL scattering:

#### **Uncertainty dominated by hadronic physics contributions!**

Total SM prediction:

Numbers taken from "Muon g-2 Theory Initiative White Paper": Phys. Rept. 887 (2020) 1-166



## The two clocks of a charged lepton

A *relativistic* charged lepton circulating a homogenous magnetic field experiences two effects:

Cyclotron motion

Equilibrium between centrifugal and Lorentz force

Cyclotron frequency



Spin precession

ce

Coupling of magnetic moment and field

Larmor frequency

$$\overrightarrow{\omega}_{\rm s} = -g\frac{Qe}{2m}\overrightarrow{B} - (1-\gamma)\frac{Qe}{\gamma m}\overrightarrow{B}$$

Anomalous spin precession frequency:

$$\left(\frac{g-2}{2}\right)\overrightarrow{B} = -a\frac{Qe}{m}\overrightarrow{B}$$

M. Fertl - PANIC 2021, September 7<sup>th</sup> 2021

6





## The muon g-2 experiment at Fermilab





## **Clock frequency shifts for muons in motion**

Evolution of muon's longitudinal polarization in a superposition of electric and magnetic fields



Relativistically generated magnetic fields "electric field correction" "pitch correction" Reconstruction FNAL E989:  $E \neq 0$ of complex beam suppressed at  $\gamma = 29.3$ dynamics "magic momentum"



## Extracting $a_{\mu}$ - the external ingredients

Anchor B, e and  $m_{\mu}$  to other high-precision measurements and calculations



$$a_{\mu} = \frac{\omega_{a}}{\tilde{B}} \frac{m_{\mu}}{e} = \frac{\omega_{a}}{\tilde{\omega}_{p}'(T_{r})} \frac{\mu_{p}'(T_{r})}{\mu_{e}(H)} \frac{\mu_{e}(H)}{\mu_{e}} \frac{m_{\mu}g_{e}}{m_{e}} \frac{g_{e}}{2}$$





Total uncertainty from external quantities: 24 ppb







## Extracting $a_{\mu}$ - our challenge

 $R' = \underbrace{\frac{\omega_{a}}{\tilde{\omega}_{p}'}}_{\mu} = \underbrace{\frac{f_{clock} \, \omega_{a}^{meas} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{\frac{\omega_{a}}{\tilde{\omega}_{p}'} \left(\frac{m_{\mu}}{2}\right)}_{\tilde{B}' e} \underbrace{\frac{\omega_{a}}{\tilde{B}'} \left(\frac{m_{\mu}}{2}\right)}_{\tilde{\omega}_{p}'} \left(\frac{m_{\mu}}{2}\right)}_{\tilde{\omega}_{p}'} \underbrace{\frac{m_{\mu}}{2}}_{\tilde{\omega}_{p}'} \left(\frac{m_{\mu}}{2}\right)}_{\mu_{e}} \underbrace{\frac{m_{\mu}}{2}}_{\tilde{B}' e} \underbrace{\frac{m_{\mu}}{2}}_{\tilde{\omega}_{p}'} \left(\frac{m_{\mu}}{2}\right)}_{\tilde{\omega}_{p}'} \underbrace{\frac{m_{\mu}}{2}}_{\mu_{e}'} \underbrace{\frac{$ 



## Extracting $a_{\mu}$ - our tools



## Polarized muons at Fermilab muon campus



8 GeV p<sup>+</sup> strike target, 120 ns bunch length 8 bunches spaced by 10 ms, second bunch train 200 ms later

Focus the "debris" into a momentum selective beam line  $p = 3.094 \,\text{GeV/c} \pm 2\%$ 

Decay figure: K.S. Khaw, PhD thesis, ETH Zürich, 2015; Muon Campus: M. Convery; Rose in mirror: R. Hahn, Fermilab in the context of "Charge-parity violation" https://www.symmetrymagazine.org/article/charge-parity-violation





Energy (!) disperse delivery ring:  $\mu^+$  outrun  $p^+$ ,  $\pi^+$  decay away

Pure lepton beam: 60 - 70%  $\mu^+$ , 30 - 40%  $e^+$ 



M. Fertl - PANIC 2021, September 7<sup>th</sup> 2021

# The superconducting magnet in MC1

#### Particles from delivery ring



```
Magic momentum: p_{\mu}^{\text{magic}} = 3.094 \,\text{GeV/c} \pm 0.5 \,\%
```





## The muon inflector magnet

#### Particles from delivery ring



M. Fertl - PANIC 2021, September 7<sup>th</sup> 2021

Superconducting inflector magnet cancels return B field in iron yoke to make muon travel straight!





Field free region





# The fast kicker





## The electrostatic quadrupoles



M. Fertl - PANIC 2021, September 7<sup>th</sup> 2021

Pulsed "electrostatic" quadrupoles

## Vertical focusing and confinement of muon beam

Quasi-penning trap cover 43% of the ring





## The positron calorimeter system



### Wiggle plot basics and laser calibration system

#### Spin precession in muon rest frame

#### transforms to

#### above-energy-threshold count rate modulation in laboratory frame

![](_page_17_Figure_4.jpeg)

Dedicated laser calibration system to ensure energy calibration of calorimeter system

![](_page_17_Picture_7.jpeg)

![](_page_17_Picture_10.jpeg)

# The blinding of the master clock ...

• ... by Greg Bock and Joe Lykken in 2018 (hardware blinding) ...

![](_page_18_Picture_2.jpeg)

• ... and additional software blind for each  $\omega_{
m a}$  analysis team

![](_page_18_Picture_6.jpeg)

![](_page_18_Picture_9.jpeg)

### The statistics and the uncertainty table for Run 1

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

| Q | lai | 101 | ιy |
|---|-----|-----|----|
|   |     |     |    |

|                                                                      |                  |             | Uncertainty domina<br>by statistics!    |
|----------------------------------------------------------------------|------------------|-------------|-----------------------------------------|
| Quantity                                                             | Correction Terms | Uncertainty |                                         |
|                                                                      | (ppb)            | (ppb)       |                                         |
| $\omega_a^m$ (statistical)                                           | _                | 434         |                                         |
| $\omega_a^m$ (systematic)                                            | .—               | 56          |                                         |
| $C_e$                                                                | 489              | 53          | Already surnassed                       |
| $C_p$                                                                | 180              | 13          |                                         |
| $C_{ml}$                                                             | -11              | 5           | anticipated goal (70                    |
| $C_{pa}$                                                             | -158             | 75          |                                         |
| $f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle$ | -                | 56          |                                         |
| $B_k$                                                                | -27              | 37          |                                         |
| $B_q$                                                                | -17              | 92          |                                         |
| $\mu_{p}'(34.7^{\circ})/\mu_{e}$                                     | -                | 10          | work in progres                         |
| $m_{\mu}/m_e$                                                        |                  | 22          | for runs 2-5!                           |
| $g_e/2$                                                              |                  | 0           |                                         |
| Total systematic                                                     |                  | 157         |                                         |
| Total fundamental factors                                            | -                | 25          |                                         |
| Totals                                                               | 544              | 462         |                                         |
|                                                                      |                  |             | Total uncertaint<br>dominated by static |

| Dataset | Date                           | Field index n<br>ESQ HV [kV] | Kicker HV [kV] | Number of<br>positrons |
|---------|--------------------------------|------------------------------|----------------|------------------------|
| 1a      | Apr 22, 2018 -<br>Apr 25, 2018 | 0.108<br>18.3                | 130            | 0.9 x 10 <sup>9</sup>  |
| 1b      | Apr 26, 2018 -<br>May 02, 2018 | 0.120<br>20.4                | 137            | 1.3 x 10 <sup>9</sup>  |
| 1c      | May 04, 2018 -<br>May 12, 2018 | 0.120<br>20.4                | 132            | 2.0 x 10 <sup>9</sup>  |
| 1d      | Jun 06, 2018-<br>Jun 29, 2018  | 0.108<br>18.3                | 125            | 4.0 x 10 <sup>9</sup>  |

![](_page_19_Figure_9.jpeg)

![](_page_19_Picture_10.jpeg)

# Extract $\omega_{a}^{\text{meas}}$ from the wiggle plot

Histogram of decay e<sup>+</sup> arrival times (wiggle plot)

![](_page_20_Figure_2.jpeg)

Separate analyses for Runs 1a-1d: 3 independent event reconstruction schemes 11 different and independent analyses 6 independent groups

Extensive systematic checks passed:

 $\rightarrow$  "Software" unblinding to check consistency, hardware blinding still in place

![](_page_20_Figure_7.jpeg)

![](_page_20_Picture_11.jpeg)

### The long-known corrections: E-field and pitch correction

$$\frac{d}{dt}P_{\rm L} = \frac{d}{dt}\left(\hat{\beta}\cdot\vec{s}\right) = -\frac{e}{m}\vec{s_{\perp}}\cdot\left[a_{\mu}\hat{\beta}\times\vec{B} + \left(a_{\mu} - \frac{1}{\gamma^2 - 1}\right)\beta\vec{E}\right]$$

#### Pitch correction

![](_page_21_Picture_3.jpeg)

Electrostatic focusing  $\rightarrow$ spin precession due to  $E_x$ and vertical harmonic motion in quadratic E field!

$$C_{\rm p} = \frac{n}{4R_0^2} \left\langle A^2 \right\rangle$$

Trackers measure vertical oscillation amplitude

![](_page_21_Figure_7.jpeg)

Correction: 180 ppb, Uncertainty: 13 ppb

![](_page_21_Figure_10.jpeg)

![](_page_21_Picture_13.jpeg)

### Phase acceptance correction

![](_page_22_Figure_1.jpeg)

$$N(t) \approx N_0 e^{-\lambda t} \left[ 1 + A \cos \left( \omega_{a} t + \phi \right) \right]$$
  
The phase of the muon effect is not stable, then:  

$$\phi_{a} t + \phi_{0} + \phi_{0} + \phi_{0} + 0^{-1} \frac{\delta^{a} t^{e}}{\delta t^{e}} = \cos \left( (\omega_{a} + \phi') t + \phi_{0} + \phi$$

• The decay positrons carry a particular phase

- The phase depends on
  - Muon decay position
- Extensive simulation campaign
- Decay positron energy

• Not a problem if muon distribution is stable in time, but...

![](_page_22_Picture_12.jpeg)

![](_page_22_Picture_13.jpeg)

### Phase acceptance correction: The voltage on the ESQs

![](_page_23_Figure_1.jpeg)

### Extracting $a_{\mu}$ : the magnetic field distribution and calibration

$$R' = \frac{\omega_{a}}{\omega_{p}'} = \frac{f_{clock} \,\omega_{a}^{meas} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{calib} \left\langle M\left(x, y, \phi\right) \omega_{p}'\left(x, y, \phi\right) \right\rangle \left(1 + B_{k} + B_{q}\right)}$$

![](_page_24_Picture_5.jpeg)

### The magnetic field calibration chain

![](_page_25_Figure_1.jpeg)

"The fixed probe array" "The calibration" "Plunging probe" to transfer 378 pulsed nuclear magnetic absolute calibration to trolley probes resonance probes measure 24/7 around µ beam PT1000 macor support aluminum shield 100.00 mm Serial inductor coi Base piece w RF coil support RF coil plastic suppor Outer crimp ring double crimp connection End cap with tapped hol 254 mm Petroleum jelly volume Inner crimp ring Inner conductor of capacitor Parallel inductor coil PTFE tuning piece with slot Shatter Resistant

![](_page_25_Picture_5.jpeg)

![](_page_25_Picture_6.jpeg)

### The precision magnetic field: spatial mapping

![](_page_26_Figure_1.jpeg)

M. Fertl - PANIC 2021, September 7<sup>th</sup> 2021

#### A typical azimuthally averaged magnetic field map

![](_page_26_Figure_5.jpeg)

![](_page_26_Picture_7.jpeg)

### The precision magnetic field: tracking in time

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_5.jpeg)

### Extracting $a_{\mu}$ : the muon weighted average magnetic field

$$R' = \frac{\omega_{a}}{\omega_{p}'} = \frac{f_{clock} \,\omega_{a}^{meas} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{calib} \left(M\left(x, y, \phi\right) \,\omega_{p}'\left(x, y, \phi\right)\right) \left(1 + B_{k} + B_{q}\right)}$$

![](_page_28_Picture_5.jpeg)

### The muon weighted average magnetic field

![](_page_29_Picture_1.jpeg)

#### A muon's perspective of the tracker

![](_page_29_Picture_3.jpeg)

![](_page_29_Figure_4.jpeg)

Beam tracker stations combined with beam dynamics simulations

![](_page_29_Figure_7.jpeg)

#### 56 ppb uncertainty

Incl. probe calibrations, field map, tracker alignment, beam dynamics model

![](_page_29_Picture_12.jpeg)

 $R' = \frac{\omega_{a}}{\omega_{p}'} = \frac{f_{clock} \,\omega_{a}^{meas} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{calib} \left\langle M\left(x, y, \phi\right) \,\omega_{p}'\left(x, y, \phi\right) \right\rangle \left(1 + B_{k} + B_{q}\right)}$ 

M. Fertl - PANIC 2021, September 7<sup>th</sup> 2021

### Extracting $a_{\mu}$ : transients from ESQ

![](_page_30_Picture_5.jpeg)

### Transients from electrostatic quadrupoles (ESQ)

ESQ only static on the time scale of an muon beam bunch injection:

![](_page_31_Picture_2.jpeg)

- Pulsing with high-voltage:
  - $\rightarrow$  mechanical vibrations of electric conductors
  - $\rightarrow$  perturbation of B field

![](_page_31_Picture_6.jpeg)

M. Fertl - PANIC 2021, September 7<sup>th</sup> 2021

Time (ms)

![](_page_31_Picture_10.jpeg)

## Extracting $a_{\mu}$ - our tools

![](_page_32_Figure_1.jpeg)

### All the analysis is available for you to look at in detail

PHYSICAL REVIEW ACCELERATORS AND BEAMS 24, 044002 (2021)

Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab

![](_page_33_Figure_3.jpeg)

M. Fertl - PANIC 2021, September 7<sup>th</sup> 2021

PHYSICAL REVIEW A 103, 042208 (2021)

#### Magnetic-field measurement and analysis for the Muon g - 2 Experiment at Fermilab

PHYSICAL REVIEW LETTERS 126, 141801 (2021)

Editors' Suggestion

Featured in Physics

#### Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm

B. Abi,<sup>44</sup> T. Albahri,<sup>39</sup> S. Al-Kilani,<sup>36</sup> D. Allspach,<sup>7</sup> L. P. Alonzi,<sup>48</sup> A. Anastasi,<sup>11,a</sup> A. Anisenkov,<sup>4,b</sup> F. Azfar,<sup>44</sup> K. Badgley,<sup>7</sup> S. Baeßler,<sup>47,e</sup> I. Bailey,<sup>19,d</sup> V. A. Baranov,<sup>17</sup> E. Barlas-Yucel,<sup>37</sup> T. Barrett,<sup>6</sup> E. Barzi,<sup>7</sup> A. Basti,<sup>11,32</sup> F. Bedeschi,<sup>11</sup> A. Behnke,<sup>22</sup> M. Berz,<sup>20</sup> M. Bhattacharya,<sup>43</sup> H. P. Binney,<sup>48</sup> R. Bjorkquist,<sup>6</sup> P. Bloom,<sup>21</sup> J. Bono,<sup>7</sup> E. Bottalico,<sup>11,32</sup> T. Bowcock,<sup>39</sup> D. Boyden,<sup>22</sup> G. Cantatore,<sup>13,34</sup> R. M. Carey,<sup>2</sup> J. Carroll,<sup>39</sup> B. C. K. Casey,<sup>7</sup> D. Cauz,<sup>35,8</sup> S. Ceravolo,<sup>9</sup> R. Chakraborty,<sup>38</sup> S. P. Chang,<sup>18,5</sup> A. Chapelain,<sup>6</sup> S. Chappa,<sup>7</sup> S. Charity,<sup>7</sup> R. Chislett,<sup>36</sup> J. Choi,<sup>5</sup> Z. Chu,<sup>26,e</sup> T. E. Chupp,<sup>42</sup>

34

![](_page_33_Figure_15.jpeg)

## The Muon g-2 collaboration ready to unblind ...

#### **Domestic Universities**

Boston Cornell Illinois James Madison Kentucky Massachusetts Michigan Michigan State Mississippi Northern Illinois Regis UT Austin Virginia Washington National Labs Argonne Brookhaven Fermilab

#### China

Shanghai Jao Tong University

#### United Kingdom

Lancaster Liverpool University College London

#### Italy

Frascati Molise Naples Pisa Roma 2 **Trieste** Udine Germany JGU Mainz TU Dresden Russia JINR/Dubna Novosibirsk South Korea CAPP/IBS

**KAIST** 

![](_page_34_Picture_9.jpeg)

#### Muon g-2 Collaboration

7 countries, 35 institutions, 190 collaborators

![](_page_34_Picture_14.jpeg)

#### ... on February 25th, 2021!

![](_page_34_Picture_16.jpeg)

![](_page_34_Picture_17.jpeg)

The 40 MHz clock was really set to: 39 997 784 MHz

![](_page_34_Picture_21.jpeg)

### Result from combined Run 1 datasets

![](_page_35_Figure_1.jpeg)

![](_page_35_Picture_5.jpeg)

## A new era of $a_{\mu}$ comparisons

![](_page_36_Figure_1.jpeg)

![](_page_36_Picture_5.jpeg)

### Predictions are hard to make if they concern the future...

New results from Fermilab Run 2 and 3 will feature

- More statistics
- Smaller systematics:
  - Better temperature stability
  - Beam on nominal orbit
  - Magnetic field transients measured

Independent measurement of muon g-2 at J-PARC

- Different experimental technique
- Different beam energy  $\rightarrow$  Different magnetic field

Further theory developments

- Lattice QCD calculations of HVP awaiting independent results
- Proposed new data-driven HVP determination: MUonE at Cern
- Interpretation in a more context of LUV effects (see talk: Anders Thomsen, 5 Sep 2021, 14:30), PRL has > 250 citations to-date!

![](_page_37_Figure_15.jpeg)

![](_page_37_Picture_17.jpeg)

![](_page_37_Picture_20.jpeg)